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ABSTRACT

Inteusity interferometry, as develupei by Hlanbury Brown and Twiss
for stellar observation, has shown rtlative. .nsensitivity to atmospheric
scintillation. However, with classical sources, the limitations placed
on this technique by quantum noise ý-l detector efficiency arc severe.
This situation is vastly improved when laser iilurnination is empluyeo.
A modification of the Hanbury Brown- Twiss experiment is described whereby
intensity correlati-t, is performed using coherent light and the statis-
tical averages aio taken in the space dcoain. Generalizing a form of
the mutual cohercece function, the far-zone behavior of th~e mutual inten-
sity function for an intermediate time average is derived. This result
is used to reconsti-uct the irradiance distributi,n of a spatially rough
source. The far-field intensity distribution is recorded spatially for
one time-resoluticn unit of the detector. The resulting spatial signal
is autocorrelated and rela-ed to the intensity distribution over the
source. Thus, without averaging in the ti-me domain, a spatial Fourier-
transform rel.ation is derived oetween the far-field intensity correlation
and the source irradiance, similar to 'h results of Hanbury Brown and
Twiss.

A major limitation of intensity interferoctry in bcth the space
and time domains has been that only sources of even syce-ry c•ould be
uniquely inferred from far-field intensity corr2lat.ons, 4.rnce only the
modulus was derived. However, this restriction can be ret,*ved by pro-'
cessing, in addition, the field in a simple way bcforc Jetecti to z-
a new symmetrized function. This intensity record corresponds tc Vhe
radiation pattern derived from the pure even part of the intensity pro-
file. The record is autocorrclated, as befor3, yieldinF a spatial power
sictrum. But by the central-ordir-ate and hermitia, properties of the
spatial Fourier transform, the real part of .he teansfcrmation can be
specified exactly from the symmet~ized record. U5ing the modulus of the

Preceding page blank



total transform together with the real part of the transform, one can
infer the phase to within a sign. Thus a pair of images is derived, one
erect, the other inverted. This ambiguity can be resolved, however, by
translating the source in a known direction off axis.

The results derived for the spatial detecticn of intensity fluctu-
ations a~e shown to be similar to previous results dealing with the phe-
nomenon of laser speckle in terms of the spatial transform relations.
However, the criterion of d~cector time resolution, central to the resulEs
of intensity interferometry, is absent f.ýr laser speckle effects. Thus,
it can be inferred that the utility of *r, tensity interferometry is based
on the detection of a time-variant speckle pattern.

Finally, experimentai evideuce is offered to support the spatial
transform relations predicted here. In addition, a time-domain intensity-
correlation experiment i& performed, the purpose of which is to Infer the
existence of a time-varying speckle pattern.
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PREFACE

The history of intensity interferometry is rooted in the work of
Hanbury Brown and Twiss. Their earliest investigations1* dealt with the
problem of resolving stellar radio sources by a technique involving the
correlation of the squared outputs of two receivers. The advantages are
the reduction of certain kinds of experimental constraints as well as
the comparative insensitivity of the method to atmospheric scintillat~on.
A preliminary conclusion reached at that time was that this technique of
intensity correlation would not be applicable at optical frequencies 3
because of limitations imposed by photon noise. However, in later work,
Hanbury Brown and Twiss showed that meaningful intensity correlations
could be made at optical frequencies even with highly degenerate sources.
The limitations placed on this approach by quantum noise and detector
efficiency have been severe, calling for highly refined experimental
technique.

For laser illumination, the situation is very different. The sirnal-
to-noise ratio can be typically increased by six orders of magnitude.-
However, the statistics of the source must be considered in the measure-
ment. The key to relating intensity correlations to some property
involving field correlations les in the assumption of gaussian statis-
tics, 5 for which all higher moments are determined from the first and
second. Single-mode lasers, though, are distinctly non-gaussian in their
temporal statistics and, therefore, cannot be described by theLry framed
for thermal sources. But with the addition of axial modes, It has been
asserted6 that the field amplitude becomes nearly gaussian distributed.

The principal formula used by Hanbury Brown and Twiss [Ref. 3b,
Eq. (2.1)] to infer the diameter of a distant source shows that the time-
averaged correlation of intensities at two points is equal to the product
of a function involving the temporal characteristics of the source with
the square of the spatial-Fourier transform of the source intensity dis-
tribution. Consideration of the source temporal statistics is necessary
if the intensity-product output of the detectors is averaged in the time
domain (as it nearly always is) to overcome the limitntions imposed by
photon and detector noise and possibly reduce scintillation effects pro-
duced by transmission through the atmosphere. If the intent of an inten-
sity correlation experiment is to gain information concerning the source
intensity distribution, then the temporal statistics may be of little
interest in themselves.

Intensity interferoiietry can be understood as a two-point correlation
of intensities following the squaring of the electric fseld at the
detector. If the source is quasi-monochromatic, each differential ele-
ment on the object emits a number of temporal modes that interfere with
each other at the detector. If the detector has sufficient bandwidth to

References are t*sted on page 66.
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detect the-- beat frequencies, the amplitude and phase of the incoming
intensity beats are utilized. What is sufficient depends on the band-
width of the source. For a thermal source, most beat frequencies are
too high to be resolved even with the megac~cle response of the Hanbury
Brown-Twiss apparatus. For a single-m-e7 laser, all beat frequencies
could be 1 ,ss than 100 Hz. It is com-,,only argued that, in these circum-
stances, t t random fluctuations of tre temporal statistics from dif-
ferent poi.ts of the source cause the beat frequencies from each source
point to add incoherently at the detector. The time-averaged intensity
correlation is then proportional to the squared spatial Fourier trans-
form of the source intensity. This approach gives essentially a squared
versicn of the van Cittert-Zernike theorem. 7

We wish to suggest that the requirement of surface roughness at the
source (to assure spatial incoherence) is sufficient to guarantee the
incoherent addition of beat frequencies at the intensity detectors.
Thus, if temporal noise (photon noise, time-dependent detector noise)
is largely absent in a local spatial sense, as might be the case with a
multi-axial-mode laser with photographic detection, then the intensity
information might be gathered during one resolution time of the detector
over a plane section normal to the direction of light propagation. Any
noise arising in the process would be spatial, and might be averaged out
by taking a sufficiently large area of spatial correlation. The reduc-
tion of atmospheric spatial noise would be similar to a process known as
aperture averaging. 8 Film-grain noise would be extremely well averaged
by the relatively large area of averaging.

The relative insensitivity of intensity interferometry to turbulence
can be shown 2 if the propagation medium is assumed to be dispersionless
over the range of carrier frequencies. Because each temporal frequency
sees the same refractive index, the differential (beat) frequencies
remaia unchanged. However, the spatial-Fourier-transform relation between
the source and the far-field scales as the average frequency, not the
beat frequency, and thus the resolution afforded by optical frequencies
is maintair.ed.

The idea of examining spatial beat frequencies of second-order
correlation is, of course, not new. Many c3assical field-correlation
interferometers, as well as holographic experiments, are built on this
principle, involving a spatial or time lag between interfering beams of
the same source. More difficult is the spatial recording of b ats from
two independent sources, as demonstrated by Magyar and Mandel.

In this thesis, we examine the subject of intensity interferoretry
in the spatial domain. In Section 1, an introduction to this field is
given, leading up to the results_8 f Hanbury Brown and Twiss and the
extension of their work by Gamo.1 In Section 2 using as a basis a
mathematical franework due to Marchand and Wolf,iI we generalize the
concept of the m'." r- erence function to time averaging of arbitrary

10

oI



length. The fourth-order field correlation function in the far zone is
then formed, revealing a Fourier transform relationship with the source
irradiance.

In Section 3, a technique of symmetrizing the electric field before
detection is developed as a way of inferring the phase of the source-
intensity Fourier transform. With this additional information, the
transfoi'm can be inverted to form the intensity distribution for sources
of arbitrary symmetry. In the next section, comparisons are made between
snatial intensity interferometry and the phenomenon of laser speckle.
Finally in Section 5, some experiments involving spatial intensity cor-
relati.n are described. Included is an investigation into the relation-
ship between the average-value and time-varyinR speckle patterns.

III



1. AN INTRODUCTION TO INTENSITY INTERFEROMETRY

1.1 Introduction

Central to the framework of intensity interferometry are two kinds
of relationships, each existing in distinct d-,-mains. The first, and the

principal, of these relationships lies in the spatial domain, since we
are here primarily interested in optical imaging by means of intensity
correlations. Specifically, by some manipulation of the far-field inten-
sity distribution of a source, we wish to infer the intensity dis-ri-
bution over the source itself. However, the efficacy of this intent
rests almost totally on the constraints of a second area of relationships,
the temporal domain. It is here that the bandwidth, power, and time
stability of the carrier waves are determined and even the practicality
of this special kind of imaging.

In this chapter, we intend to give a systematic introduction to
intensity interferometry. In essence this technique is straightforward.
The fundamental principles are rc:'ealed in the well-known mathematical
techniques of correlation and Fourier transformation. First, we will
establish the basic spatial relationships between source and far field
for both the first- and second-order cases. Next, we will show the
relationship between se-cond- and fourth-order field statistics for a

gaussian time variable. Finally, we will describe the work of Hanbury
Brown and Twiss and the extension of their work by Gamo.

1.2 The Huygens-Fresnei Principle

We wish to examine here the relationship between the electric field
on a section of plane normal to the direction of energy transport with
the field in a plane section at some later time. Referring to Figure 1.1,

we call V(ý,n) the electric field bounded by the aperture Z in the &-n

"-" ; i V(x1y)
'11

R0

Figure 1.1 The Coordinate Axes fe tVie Object (E-n)
and Detection (x-y) F nes

13
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V

plane. Upon realizing that each point in the apelture radiates a spheri-
cal wave to the right, we can directly write the Huygens-Fresnel principle
(Ref. 7, Ch. 8) for paraxial waves for which

V(x,y;t) V(r, n;t) explikR(R•,;x',y)] drd,

where k = 2n/X, and x equals the wavelength of the radiation. Equation
(1.1) states that the electric field V(xy;t) is formed of a superposi-
tion of waves emanating from each point within the aperture, properly
phase-shifted according to the exponential term and diluted by the 1/R
expression. Now

=(E,n;x,y) [R 2 + (x-F.)2 + (y-n) 2
2 2½;x Y (1.2a)

R. 1, -- +) ÷ (1.2b)

when approximated by the first two terms of the binomial (the Fresnel
approximation) expansion. Using Equation (1.2b) in Equatirn (T.l) and
making the far-field (Fraunhofer) approximation [Ro >> k(& +r, max/2],
we can write

exp[ik(R0 + (x 2 + y 2)/2Ro)]
V(x,y;t) =

IM (1.3)

x f ,(ýr,n;t)ex-p i -L (x&+ yn d~dn.

0

Apart from the coefficients before the integral, Equation (1.3) shows
that the electric fields in an aperture and the far field are related
by a spatial Fourier transform operatioP. T.his property is basic to
the ensuing work involving intensity correlations with quasimonochromatic
!ight.

1.3 The van Cittert-Zernike Theorem

Although Equation (1.3) holds for radiation of general frequencies,
the relationship it expresses is somewhat academic here from the stand-
point that it describes electric-field quantities that are unmeasurable

14
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at optical wavelengths. It is this constraint that has prompted many
investigators to couch optical theory in the form of correlations of
field quantities. Vie most well known of these correlatiosj is ce
the mutual coherence function, rfx1 ,x 2 ,T), where

1-2 T
r -2,• T) -w2 fir • V( It.+T)V*(c 2t)dt, C11.4a)

T -T

= Vcx_,t t)V*(x ,t), (1.4b)

and ", is the time delay between the instantaneous product of the elec-
tric fields at the points x1 and 12. A special case of the mutual
coherence function results when the time delay is set to zero or

r~jJx2,1=0 - ,(x 1 ,X), (1.S)

where J(x ,x 2 ) is called the mutual intensity function.

We wish to calculate the mutual intensity in the far field of a
spatially incoherent source. Using Equations (1.5), (1.4b), and (1.3),
we write

V (x y I t)V'(x 2 Py ;t) = J(x 1,yl;X 2 #y2) (1.6a)

1' 1' 2 2

exp[~ ________

[- R- 0 -____- 2 2+y1V(IPr ~~*&,,t
(Tit ) -ff

(1.6b)

X exp[ ~ +- x1  x 2 2 +y n - y2n2)]dý 1d& 2 d.Idnir2 #

where the processes of temporal averaging and spatial integration have
been interchanged and the radiation assumed quasimonochromatic
(VMi. >> Vmax - Vmin) so that the wavelength dependence can be approxi-

mated by the mean wavelength. Sinc 2 the source is spatially incoherent,
the mutual intensity takes the form

V(C, ni ;t)V*R2,'2;t) = J(ý1 ,n ;r 2,n 2 ), (l.7a)

(C-nCn n2). -(l.7b)

15



Physically, Equation (l.7b) implies that the time fluctuations of the
electric fields at two non-identical points in the source plane are com-
pletely uncorrelated; equivalently, the total power measured at a point
in the far field is simply the sum of the squared electric fields from
each differential element of the source, taken with the proper phase
delay anG attenuetion.

Using f£eaat .ot (1.7b) in Equation (1.6), the mutual intensity col-
lapses to a s:ngle area integral giving

kI 2 2 2 2 I
J(x1 5y y exp 2 -X 2 +Yl " 2

(AR 0  (1.8)

xc JJ1(n,.)exp -i. R (x 1 -x2) A (y -y)n] dedn.

AMthough usually presented in a normalized form (Ref. 7, p. 510),
Equation (1.8) is a statement of the van Cittert-Zern ke theorem which.
aside from the accompanying coefficient, shows that the mutual intensity
in the far fielc f a spatially incoherent source is givew by the Fourier
transform of the intensity across that source. This thecrem is basic to
most optical imaging, since lenses effect the inverse transfOrmation of
Equation '-.8) to give a scaled distribution w-f the object irradiance.
By the .caling property from one domain to another, intrinsic tc the
Four'er transform operation, large detail in the source is giver, by small
seprrations in the far field and vice versa. Thus imaging with a finite
aperture implies a finite limit to the high-grequency detail resolvable
on the source. This justifies the well-known description of lenses as
low-pass filters. Also, since there are many more pairs of pi.ints within
an aperture corresponding to small separations than to large, there Is a
built-oin redundancy weighted in favor of low-frequency resolution.

Equation (1.8), although a statement of second-order correlation?
is basic also to fourth-order correlation, as we shali see later.

1.4 A Theoren Concerning the Fourth-Order Gaussian Rand- Process

We have just seen in Equation (1.7) the way in which a time average
can be usea to impose a condition on the correlation of an electric-field
pair. No particular assumpti-on was made about the statistics of the
field variables. However, it is well known that classical thermal sources
exhibiZ statistical fluctuations that are gwussian in nature. Nodara 6

has asserted that lasers with but a few axial modes are, to a good
approximation, gaussiart as will. H-fowever, Trcup 1 3 has argued that gaus-
sian statistics are achieved only in the limit- of a large mrn',er of
axial modes.

16



A well-known property of gaussian statistic,, is that all higheT order
moments are representable in terms of the first and second. A relation
given by Middleton 14 reflecting this property gives the expectation value
of the 2mth-order correlat'on for the zero-mean random variable zj = xj -J,
where

E(z1 Z2 ... z ) = r - (1.9a)

all j k
pairs

and E(z.z 2 ... z 2m+) = 0. (l.9b)

We now use Equation (1.9a) to examine the relation between rhe fourth-
order and lower-order moments of a complex-valued electric field variable
that is gaussian in the domain in which the averaging takes place. We
therefore wTite

EII)=E(V V*V V*) 11a"-I 1 2-z (1 1 a

V V -v v v v*, v v v* v Ilob)1 1122 1212 12 12

= • 2• v-22 . •• 2 I0c
+17V2 1 21 (11c

where the complex conjugation has been used to assure a real expectation

value. The first term of Equation (1.10c) is the product of the mean
intensities at points one and two, while th- 'ast is the mutual coherence
function defined by Equation (1.4a) if the overbars are taken as an
average in the time domain and the ergodic hypothesis is assumed. We
now examine the second term in this expression.

.2The electric field can be represented by the complex analytic signal
(where a cc..stant term has been suppressed) as

V(t) -(w) exp(-iwt)dw, (1.11)

where v(w) exists only for positive frequencies. Using Equation (1.11).
the second term of Equation (1.10c) can be expressed

tI
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I2

VI(t)V2 (t) -

lir jjjTI vi•~ 2( )x[_i(I * 2)t]duldw2dt , (l.l2a)

T-C

-T 12

= limr W. I x )v 2(2)sinc[(wl÷ w2)T]dw d 12 (l.12b)
fV:122 1 2 1 21

0

where in -oir, from Equation (1.12a) to (1.12b) the order of t.me and
frpquency integrations has been reversed, and sinc x = sin x/x. As the
limit of T is taken, the sinc function approaches a delta function such
that the integral has value only for ±WI = .w2 . Since v(w) can exist
only for positive frequencies, the integral is zero.

Thus the fourth-order correlation of electric fields (second-order
correlation intensities) given in Equation (1.lOa) becomes

2
1112 = 1I 11 + r 12 1 , (1.13)

where the .Jefin~ng relation of Equation (1.4a) has been used.

Equation (1.13), therefore, describes the relationship between the
intensity and the field correlations for a process that is gaussian in
the time domain. We note that, in general, the field correlation is a
complex quantity, so that only the relationship between the intensity
correlation and the modulus of the field correlation is implied. It
reveals the urderIjing principle by which intensity correlations in the
far field may be used to infer the accompanying field correlations and
hence, through Equaticn (1.8), to -ain knowledge of the intensity dis-
tribution at the source.

1.5 Intensity Interferometry in the Temporal Domain

As indicated initially in the Preface, Hanbury Brown and TwissI

were the first to realize the potential of using intensity beats to
3erive information concerning the irradiance of a distant source. First
iiorking at radio frequencies and then later at optical wavelengths. 3

danbury Brown and Twiss formulated the imaging problem and used the
results to infer the d.ameter of the star Sirius. We wish to present a
brief outline of their work which relates to the problem at hand.

IS1



Following Reference 3b, Hanbury Brovin and Twis-; express the elec-
tric field as a superposition of quasimonichromatic waves mit•rd from
a diffeiential area in the form

V(x) h W cos t r

r--0

where h()dj is proportional to the population of the rth mode, c is
the vacuum velocity of light, T is the time of observration, and X (W) is
a random phase that is uniformly distributed between 0 and 27 radian's.
This phase is both time and space dependent. The condition of spatial
incoherence, exp'essed earlier in the form of Equation (1.7), was assured
by Hanbury Brown and Twiss by requiring that

Xr(C)Xs (') -_=6( - Cl) (.15)1

Using Equatio', (1.14), the instantaneous intersity is formed, where

I(x,t) fdd d T2e( snlr

r>s s=1-" -"(1.16)

X cos[27(r -s)t 2n {rR &,x)-sR W,x)4 XrM- XsR )J]"I T . .. ... '

nlr is proportional to the number of quanta per mode, alr is the detector
quantum efficiency, and e is the electronic charge; also, following
Hanbury Brown and Twiss, two-dimensivnal spatial integration is indicated
by single integral signs. Ii arriving at Equation (1.16), the form of
Equation (1.14) was squarel, giving a sum of two cosine terms, one
involving a sum frequency, the other a difference frequency. The former

term has been dropped, since it corresponds to a very high frequency
term (approximately twice the mean optical frequency). The second term
can be visualized in the form of a square sxr symmetrical matrix. T"he
diagonal (r=s) corresponds to a dc term that has also been dropped, since
che ensuing electronic apparatus has zero dc response. Twice the sum is
taken of the off-diagonal terms in the upper half of the matrix.

Next, to account for the temporal resolution of the apparatus, the

complex freauency response is represented by F(rjT.) so that the filtered
current J(x,t) is written
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I f 2e(alrlnln ls)
J(x,t) L ] d d- T

r>s s=1

Re FCsexpi Zj- (r-s)t -1 (1.17)

X- Y

Invoking the Fresnel approximation [Eq~iation (1.2b)] for the ray paths •g

R(,r,x.), Equation (1.17') is used to form tf•,e tOme-average cross-corr'elation=

func t ion

- ~l fo 1

CWf) = lim -- J(~l t- t )J(2ý,tOdt,( 8T- T( - T 0 f

0 0
where

tc xI-X2 f = x - x , (1.19)

and k is a special kind of vector wave number defined by Hanibury Brown
and Twiss having dimensions or" time/length. Under theý assumption of
ergodicity, the average defined by Equation (1.18) is taken as the equiva-

lent of the ensemble average.

When Equation (1.17) is used to form the product of Equation (1.18),
a pair of cosine terms result, similar to the step from Equation (1.14)
to Equation (1.16). The first _osine argument involves a sum of phase
terms, the second a difference. Reflecting on the condition expressed
by Equation (.15), it becomes apparent that only cosine terms inde-
pendent of the random phases can contribute to the integral egpressed
by h Equation (1.18). The cosine co,.fposed of sum ter s therefore drops
out, pcaving the latter term with the additionat constraint of Equation
(t. 15) forcing an equivalence among pairs of frequency variables, simi-
lar to the earlier result expressed by Equation (1.7ti.

The result of the operation defined by Equation (1.18) is

20



C(f- = 2e di dxd'f dvac (v)2 (v)

x [n1 ()n 2 (v1 ,,)n 1 (v,'n 2 (v,i') .20)

c R0  ýf { 2 f 2()+F(flF_2(f)}
0

a relationship that can more succinctly be expressed in the fo-v•

CIrT) ,') I C ---f, (1.21)

where

IdV - -_ , C ) cos ! - C

ir-,f,) 12 -0 __, o , (1.22)

and s te crreatin fdrdý' 1(&)I&)
if 2:i i)z('

and C(O) is the correlation at zero spacing of the two intensity detec-
tors. Equation (1.21) is the principal result, revealing a particularly
important relationship. It is shcwn that the process of intensity corre-
lation in the far field with an infinite time average can be formulatedas a product of two distinct terms. The first involves the square of theFourier transform of the irradiance distribution across the source. The

second term assumes the role of proportionality constant and relates to
the power of the beat-frequency carrier.

We note that the source spatial information and coefficient term,
C(O), are completely decoupled for the above condition of temporal
averaging. This important result Jeads us to speculate under what con-
ditions an illuminated rough surface might enjoy a similar description
of decoupled space-time statistics for the case in which short time
averaging takes place. In Section 2. thi• subject will be explored.

Finally, we see that Equation (1.22) gives the squared modulus cf
the spatial Fourier transform of the source distribution. This means
that, unfortunately, except for certain situations for which the phase
of the transform is known a priori, Equation (1.22) cannot be inverted
to find I(&). A method to circumvent this constrainit is the subject of
the next section.
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1.6 The Tripie Correlator of Gamo

As wZ have found in the two previous sections, fourth-order field
corrciation yields informatio, only about the absolute square of the
second-order correlation. Equivalently, only a power-spectral measure-
ment is made relating to a function that is, in general, complex. Thus
it i_ impossible to invert the power spectrum to derive the far-field
mutual-intensity function and thence the irradiance distribution over a
spatially incoherent surface.

In order to gain information about the phase of the mutual coherence
function by the method of intensity correlations, Gamo 10 proposed a
sixth-order correlation technique. We discuss briefly the principle.
Using Equations (1.9a) and (1.4a), the third-order correlation of inten-
sities becomes

E(III 2 I3 ) = E(V V*V V V V) (1.23a)

T T (1r122 1r2 3 1  1+ 31

÷ 21r21 'r2 3 1 r 111 :os(ý 12 + 23 + 3 1), (1.23b)

whore I =I 1 , and the terms in 4, indicate the phase difference
1 2 3i

between points i and j. Uinq the identity

LI= A II - 3 - T( jrj2÷+ jr 12 +Ir12), (1.24)112I3 1l2 3 23 31

where Al. = I. - IT, Equation (1.23b) can be used to write

I 1LI 2eI 3 = 23F 1 2 i ý'231 'r311 cs(0 1 2 + 23+31. (1.2)

It can be seen from Equation (1.25) that the argument of the cosine
function involves the sums c- phase differences between the three sam-
pling points. Gamo used the argument of the cosine to form a difference
equation through which he expressed the phase of the two-point mutual
coherence function. An ambiguity arises, however, in the sign of the
phase because of the sign indeterminacy of the cosine argument. In
effect, two images are derived, one the reflection through the origin
of the other, and supplementary information must be used to resolve the
proper reconstruction.
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1.7 SummaryL

We have seen that, using the basic Huygens-Fresnel imaging equation,
the fundamental observable of op'.ical radiation, the intensity, can be
used by means of the van Cittert - Zernike equation, to infer the distri-
bution of intensity over a spatially incoherent source. Further, by
means of the moment reduction formula of gaussian statistics, we have
shown how higher-order moments can be used to infer certain properties
of the second moment, the mutual coherence function. This propcrity
for the fourth-order moment, is inherent to the Hanbury Jrown- Twiss
formulation. Finally, we have seen the general way in which Gamo used
the technique of sixth-order field correlation to derive the phase of
the second-order field correlation.

This introduction will serve as a basis upon which we will extend
the principle of intensity interferometry to detection and averaging in
the spatial domain.

2. INTENSITY IN7ERPEROMETRY IN THE SPATIAL DOMAIN

2.1 Introduction

In this section, we will examine the problem of using intensity
measurements in the far field to infer the irradiance distribution over
a rough surface. However, rather than examining the two-point, time-
averaged correlation of intensities, the far-field intcnsity pattern
will be recorded for one time-resolution unit of the detector. The
spatial signal will then be autocorrelated and related to the
irradiance.

We start with a straightforward generalization of a method given
recently by Marchand and Wolf.! 1 Our notation is similar and we follow
closely their development through their Equation (35).

2.2 The Intermediate.-Average Mutual Coherence Function

For a stationary scalar wave field, the mutup! coherence function
for the correlation of two space-time points is often written

r-(1 -2,XT) 2 TT +,t)VT(Xt)dt, (2.1)

•! -T

where x = Xni + yj, and the limits for the time integration are
allowednto approacR infinity. For this case, however, we wish to keep
the parameter T finite and by the subscripts indicate that we assume a
knowledge of VT(xI,t + -) and VT(x 2 ,t) only over the finite sample length

2T. We wish to call r(x 1 X 2 TT) the intermediate-average mutual
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coherence function and carefully stress that, for arbitrary T or shift
of origin, it may bear little resemblance to the mutual coherence func-
tion defined by the ensemble average.

Following Reference 11, we represent V(x,t) as the temporal Fourier
transform of the complex analytic signal (where a constant term (2n)-1
is suppressed)

VT(x,t) = V T (xU) exp(-iwt)dw, for 0 < It 1 T (2.2a)

0

= 0 otherwise, (2.2b)

and

VT(CW) = ] Vv(xt) exp(iit)dt. (2.2c)

Substituting Equation (2.2a) into Equation (2.1), interchanging the
order of integration, and time-averaging and performing the time inte-
gration, we get

r(xx 2,T,T) WT(x i 2 , Ww2) exp(-iWT)sinc[(j 1 - w2 )T]dwldw2 ,

whr (2.3)
where

sinc x sinx , (2.4)x

and the cross-spectral density function

WT, (x 1 2 ,w1 ,c 2 ) v•(x l,wl0v .*2(, 2 ), (2.5)

and the subscript T here and later implies a function based on the elec-
tric field statistics only for the particular 5ample 2T in length (here-
after called the detector resolution time) about the origin. The sinc
function of Equation (2.3) assumes the role of a low-pass filter. If T
is very small, the two frequency variables of Equation (2.3) are essen-
tially independent and all cross terms are represented in the product of
Equation (2.5). These cross terms form a high-frequency spectral con-
tent. However, as T tends to infinity, the sinc function assumes the
role of a delta function, constraining correlation to occur only between
identical frequencies in the transform product and forcing the integral
to a one-dimensional form. In the limit of large 7, the filtered spec-
trum of Equation (2.5) becomes the mean square value (dc) of each tem-
poral frequency component in the signal.
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Following Marchand and WolfII and the earlier lead of Walther,VT(X,w) is represented in the form of an angular (spatial) spectrum of
plane waves in Cartesian coordinates where

cc

VT(x,wJ) = aT(p,q,,J) expfik(px+qy+mz)]dpdq, (2.6)

m = (I - p 2 _ q2)½ if p 2 + q 2 < 1 (2 ,7a)

= i(p 2 + q i)½ if p2 + q2 > I, (2.7b)

and

k = w/c (2.8)

where c is the vacuum velocity of light. Equation (2.6) indicates thatvT.(x,w) is formed by a superposition of homogeneous spatial waves propa-
gating in the half space z > 0 for the criterion zxpressed by Equation(2.7a) and a set of evanescent waves propagating parallel to the planez = 0 for the case described by Equation (2.7b).

Expressing Equation (2.5) in the form of the angular spectrum of
plane waves defined by Equation (2.6), we get

WT(Xl x2 "'X 2 ) =OC AT(Pf ',q1 ;P 2 q 2 ;q '2)

x exp[ik1 (plx1 + q1y1 + mnzl)] (2.9)

x exp[-ik2 (P 2X2 + q2y2  m2z2 )]dp dq dp 2dq,

where

A, 22 a1 aT(P2 , ,2 . (2 .10)

Using Equation (2.9), therefore, the intermediate-average mutual
coherence function of Equation (2.3) can be written
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r(_- Tx~o•,T) ecxp(-iw-1 ) sincl(w,1 - 2)Tldw 1 w

ff] f AT(Pq-;p 2 ,q 2 ;w'l 2)

•2.11)

xexp[ik (plx1 + qly, + mlzI)]

x exp[-ik 2 (p2x 2 + q 2 y2 + m2 z2)d F2dq 2dp~dq2 .

:f T is allowed to approach infin'ty, the limiting form of the sinc furic-

tion forces w= 2, and the ilterrmediate-average mutual coherence
function clearly reduces to the form of Equation (2.13) of Reference ii
by the elim.naticn of one of the time-frequency integrals.

2.3 The Angular Correlation Function and OZher Spatial Correlatlor.
Functions

The cross-spectral density function WT(xI;sI2,w 2 ) is now expressed
as a four-dimensional spatial Fourier integral as

x exp~i(f x1 + g1 y1 + f 2 X2 + g2 y2 )]df 1 dg1 df 2 dg2 . (2.12)

Equation (2.9) with Equation (2.12) therefore implies

) = kl 2k T(klPl ,k I;z ;-k 2 P2 -k 2 q2 ;z2;w

x exp[-i(k lmýz - C2Mnz 2 )], (2.13)

and specifically if z = Z2 , Equation (2.13) becomes

P P= k1
2 k2 T(k 1p 1,klq);O; k2 p2,k 2 q2 *; W'2)"

(2.14)
Equation (2.14) indicates that the angular correlation function
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AT (p 1 , q1 ;P 2 q 2 ; W1'W 2 ) and the four-dimensional spatial Fourier transform

of the cross-spectral density function are related at the pl,'ne z = 0 if
fi k 101 k 1 g1 = k lq,1 f 2 = -kk2P2, and 92 = -k 2 q 2 '

Further, the spatial transform of the time spectrum of the field
can be represented by OD

v T(X,y,z;;) = VT(f,g;z;w) exp[i(fx+gy)]dfdg. (2.15)

Comparison of Equations (2.15) and (2.6) incicates

a T(pq;w) = k'%T(kp,kq,z,w) exp(-ikmz). (2.16)

Using iquation (2.16) in Equation (2.1) gives

AT (pIqI;p2.q 2 ;WII 2 ) = k1
2 k2

2 VT(k 1 p1 lklql,,Z;, 1 )

x vT(k 2 P2 , kq 2 , z2 ;w2 ) (2.17)

x exp[-i(kimI z1 - k2 m2 z2 )].

The intermediate-average sýatial correlation function is defined

v. . 1p11k 1q 1,z; 1)KkP 2 -k2 q2 'Z2 ;W2

E V T(kiPi,klq ;z 1 ;k 2 P2 k2 q2 ;, 2 -;W1 W2 ) (2.18a)

= V T (• Pkp , q, ;q 01 ,;k2 p2 1k2 q2 ; 0 ; wl W2 '

x exp[i(k1 m1 z_ - (2.18b)

where the product form of Equation (2.18b) is implied by the inde-
pendence of the left side of Equation (2.17) on z1 and z2 . If we set
Z1 = Z2 = 0, Equations (2.17) and (2.18) imply

AT.pj,ql;p2,q2 ;; 1 ,w1 ) = k1
2 k2

2 V1T(kpl1 .k l q;O;k 2 P2 ,k 2 q2 ;O;wl,w 2 ). (2.19)
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Finally, using Equations (2.14) and (2.19), we find

SV(f 1 ,g I ;0;f 2 ,g 2 ;O;WIW 2) = WT(flSgl;O;-f 2 ,-g 2 ;0;w1 ;W2 ). (2.20)

Thus the relationships between the angular ccrrelation function and the
cross-spectral density function are established by Equation (2.14) and
the angular correlation function and the spatial frequency correlation
function by Equation (2.19) for the case of intermediate time averaging.

2.4 The Intermediate-Average Correlation Function in the Far Field

Now the form of the cross-spetral density function is examined in
the far field. Defining rn (xn + yA2 + 2n2)1, we seek the asymptotic

forms for the case of x_ and x 2 tending to infinity in the paths indicatel
by the direction cosines

x2  Y2 Z2 X1 Y, z1

Rewriting Equation (2.9) using the definition of Equation (2.10), we have

W(x =x W aT(P.q l ;w,) exp[ikl(plxl+qjyj+mlz )jdpldq1

JJ aT(P 2'q 2 ;• 2) exp[-ik 2 (P 2X2  q2y 2  m2z 2)]dp 2dq 2. (2.21)

As k 1 I and kr 2 ÷, the asymptotic form of the two-dimensional

integrals is given by Miyamoto and Wolf 16 as

2 I~~l)IX2 Y2 2
- (27) 2o0 Cos 2 "r(I YlW1 ,2

""k-1 '2;'2 k1 k2  :I' I rT2 T2'

exp[illkl - k 2r 2)
X , (2.22)

r~r 2

where

zi z2
cos -2 (2.23)
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and use of Equation (2.10) has been made. Finally, if Equation (2.22)
is substituted into Equation (2.3), we get for the intermediate-average
mutt coherence function

r(x 1 ,x 2 ,T,T) = ff exp(-i It) sincf(w.- c 2 )T]dwldw 2

0

4,n2 exp[i(kIr r- k 2 r 2 )]g --Z-cos el co 2 rr(2.24)
k212 rIr2

,I 1 r2 Y2 2

In addition, because of the relationship given earlier relating the
angular correlation function to the cross-spectral density and the spatial-
frequency functions [Equations (2.14) and (2.19)], Equation (2.22) can
be written in the following forms:

exp[i(k rI kzr2)]
WTCxI,X_2;w ,w) •- 4.2 Cos 1 Cos 2 k kW T42 1 W i .92 1 2 1r2 rr 2

ý k ix Ikl k 2 x 2 k2. 2
X T 1,--Ir k; 0 ; k2--2 P 2 r-2 0; wtisw (2.25a)

-2 1_ r

Equations (2.25a) and (2.25b) can also be used in Equation (2..3) to pro-
vide alternate For?-,s of Equation (2.24). Equations (2.24) and (2.25)
form t•he modified version of the forms given in Reference 11, Equations(2.33) through (2.35). Using these results, we are now in a position to

form the self-intensity function in the far field.

2.5 The Self-Intensity Function in the Far Field

We now examine the form of the self-intensity in the far field by
letting points = x2 = x and then letting the time delay, T, be
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zero. Under these conditions, the mutual coherence function reduces to
the self-intensity (Reference 7, pp. 507-509) and, ,;iing Equation (2.25b)
in Equation (2.3) and the definition given In Equation (2.18a), we have

I(x,T) = 4i 2 cos2f~fdidw2 "'1•2 exp[i(k!- k )r]-~,T = M.Csa wd sinc[w Wm "ITo)T

C0

x Eý an 2.kY;0 W *kL (2.26)

where, as indicated earlier, the sine function acts to sup'press temporal
frequencies In the cross spectrum higher than ^.l/(2T) Hz. We now utilize
the linear transformation of the time frequency variables (for which the
jacobian is unity) defined by •

Wl - 02 = and w + 2 E= a. (2.27)

Writing the w variables in terms of these center-of-mass coordinates,

2 2 and W2 = 2o o (2.26)

which, when substituted into Equation (2.26), gives

I(x,T) ( cos 20 do 02 J sinc(PT)exp(ior/c)dp
-=0 P=-6

X ___/ X o+O/2 Y- 0; a+ p/2 (2.29)

_c r c r/

"a*o -o/2 x o-o/2 y 0SV'r! c r' c 0; O; -P12,

where the dep,.2"nce of the amplitude on the difference-frequency
coordinate, p, has been dropped, since for quasimonochromatic radiation0 2 >> lp2/4l. •

Now, using the defining transform relation of Equation (2.15), we
write the spatial correlation function at the source (z=0) where
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v 2( x Co+. 0; o1 y . + ••.2 -/2 X P/2 0; 0;T c C r' c r TKc c r "- r 0o-/

1 VT(aI,nr;0;c+o/2) .T*(E2,- ;O;OP-/2) (2.30)
(2Tr)2fi

c o

r.p ioo2 / aF ( ý2).~L (ý2~ X +n 1Y) d~1 dC2dn~dn 2.2c) r r C r r

Now the intenrediate-average spatial-correlation function,

VT(E i; 0; o+ p/2) vT(.,ni 0; a - P!2),

when considered with the filtering action of the sinc function of
Equation (2.29) will have an effective contribution only for the low-
frequency components formed by the difference-frequency terms 'l/(2T) Hz
or less.

in addition, we assume the mode population to be a slowly varying
function of a, since a >> P/2. This approximation can be couched mathe-
matically by expressing the mode population in a Taylor-series expansion
about some center frequency cc and taking only the first (constant) term.
This gives the idealized mode population the shape of a rectangle func-
tion. Thus we write

{VT(Cl ,n1 ,0;c+ 012) VT(& 2,n*0;o - i/2)]1low freq.

= A(&,,nj;o+o/2) A( 2 ,n 2 ;o-P/2) expfio(E, - n2 ,ni - n 2 ;O)] ( 2 ,31a)

= A(i.,c) A(; 2,a) H(o) exp[io(( 1 -%;r)], (2,31b)

where )I for A(ý; c± P/2) • 0
H(P)

0 otherwise.

Equation (2.31) acknowledges the loss of the optical-frequency phase,
while maintaining the phase of the intensity envelope formed by temporal
beat modes. The degree to which the phase of this envelope is detected
depends on the bandwidth of the source and the detector resolution, 2T.
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Essentially, these arguments were made by Hanbury Brown and Twiss
(Reference 3b, p. 311), except for the defin'ng of the H function. Its
introduction is brought about by the descript!on of narrow-band sources
by terms in A(C,o). For a thermal source of relatively large bandwidth,
the maximum difference P will extend far beyond the temporal-frequency
response of the system [here reflected in the sinc term of Equation (2.24)]
and be continuous as well. But for a laser source exhibiting a series of
axial modes, the complete difference-frequency dcmaiin might lie entirely
within the system response but be piece-wise continuous in its extent.

Re:ative to the representation of the intermediate-average by the
form of Equation (2.31), we wish to reiterate a statement m.Ae following
Equation (2.1) that the intermediate-averaging proceýs may bear little
resemblance to the infinite time average, even so far as the detail of
the amplitude terms, A(_,o). This situation would be serious if our
intent were to infer, for example, the time-frequency statistics of the
source. b.1- in the present concept, we desire only to infer the spatial
properties of the source. If we consider a multi-axial-mode laser beam
scattered from a spatially rough surface, the lack of correspondence
between the two averages is unimportant, for all such mode history is
integrat-'d out; all areas of the scatterer see the same mode characteris-
tics. Any mode fluctuation would be seen simply as a variation in
total received power from one sample to the next. Here, we simply
require for one detector-resolution time over a spatial domain that the
process of Equation (2.31) maintain the random phase term O(L -j•,o)
(due either to the temporal mode structure of the source or to the scat-
tering surface roughness) with sufficient mode population [reflected in
the amplitude terms A(ý,o)] such that quantum noise in both the carrier
wave and the detector can be ignored.

Using the results of Equation (2.31) in Equation (2.29) and taking
S<< 1, we write

I(PT) ( 2 oJC2 do dp exp(ior/c) sinc(oT)H(p)
0 .

x ffffA(% o) A(&2,o) expfiý(_• -i2;r)) (2.32)

x exp, i (o+c/ 2 ) ( 1 ri _y )] exp ( -c/2 (2 r n2 Y- )d 1 d&2dndn.dA

We now have the sel'-intensity in the far field expressed as a double
integral over sum- and difference-frequency components as well as two,
two-dimensional spatial Fourier transforms over the source.
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Following Goodman, we argue that the received field at any point

in the far zone consists of a sum of random-amplitude, random-phase,
complex phasors contributed by the elementary scatterers. If the size
of the scattering area is large enough to include many point scatterers
(or there are enough elementary coherence areas composing the source),
the Central Limit Theorem may be used to conclude that the electric
field in the detection plane is a gaussian random process in a spatial
sense.

Using the form of Equation (2.32) and its property of spatial gaus-
sian statistics, we are ready to form the fourth-order correlation func-
tion in the far zone.

2.6 Fourth-Order Field Correlation in the Far Zone

In Section 1.4, a theorem of fourth-order gaussian processes was
derived. This relation is implicit to the work of Hanbury Brown and
Twiss, discussed in Section 1.5, but was never explicitly utilized. How-

ever, WolfS later discussed this theorem as a plausibility argument for
their work.

To form the foarth-order correlation function, we can proceed by
writing the two-point product of intensities in the far field using
Equation (2.16) in a manner similar to that of Hanbury Brown and Twiss.
However, to develop an approach adaptable to arbitrary orders of corre-
lations, as well as to allow consideration of scattering surfaces with
arbitrary roughness, we start by writing the fourth-order gaussian
theorem (here for the electric-field spatial variable), where

<I(xl)I(x2)> = 'I(-X)> <I(,2)> - 1<V(1I)V*(12)>I', (2-33)

and where the angle brackets <> in.Iicate a spatial average, not the more
usual time average. We can conclude from Equation (2.33) that the
second-order intensity correlation is composed of two terms, of which
one forms the square of the second-order field correlation; the othei
is a spatial dc term, of no value here. Hanbury Brown and Twiss elimi-
nated a similar temporal term by means of a dc block in their electronic
apparatus. Part of the temporal dc signal contribution comes from terms
in o = 0. The two-point product of intensities in the far-field (for
o = 0) remains a constant in the time domain and is, therefore, of no
utility in the Hanbury Brown- Twiss experiment. This two-point product
does vary, however, as the spatial center-of-mass coordinate of the two
points is translated over the detection plane. Thus, terms in o = 0
must be evaluated for the case of averaging in the spatial domain.

Using the moment reduction properties of Equation (2.33) along with
Equation (2.32) and the more general form of the spatial-frequency corre-
lation function expressed by Equation (2.25b), we can write
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<I(Xj1 T)I(x 2 2,TY, = <1(xipx 2 0;;T)> 2(23a

(cr)f

, <AC jaA(Fo) exrfi.ý(r O)]> (2.34b)

Xexp [_i (Cr12)(Ll .2)] exp c- ( vr/2 ) (j2 - x )]d§3dL 2

Next, we make the following transformation to spatial center-of-
mass coordinates where

f~ - and ~ f ~+(2.35)

Introducing these into Equation (2.34), following some algebra, we find
(suppressing constant terms),

1 I M CO.
<I~j.)Ij2T -= cr" 2 da .]sinc(pT)11(p)exp(ipr/c)do

x JJJfcA(j' '72,o)A(j- f/2,o)expfio~(fpp))]

--

X expli (o-,/2 I(- f/2) - 2dfdg
r L V -_I I

= fio U2 dt, snwT)~,d
(cr)~' ,snccT)GDd

r -1 -

Ar 1 2
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I ~1 (x~ +~~] Cir X ~12 (2. 36c)
( I I )]

In going from Equation (2.36a) to Equation (2.36b), we have dropped the
Fourier-transform terms in the difference frequency variable 0, since
they are clearly negligible in the far field. The ensemble average has
been expressed as a product of two terms- C(f) is a normalized phase
correlation function1 7 describing the coherence interval over a rough
surface, and I(t,w) is the intensity in the global-spatial variable. We
have made the reasonable assumption that the field arplitude is constant
-.ithin a given coherence area of the source; specifically, for f suffi-
cienily small that C(f) # 0, A(j + f/2,o) = A(g - f/2,o) A((,o) .
This final approximation is made under the assumption that the coherence
area rf the source is small relative to the total source area, an asser-
tion already made in an earlier argument for gaussian statistics. In
Equation (2.36c), the circumflex indicates a two-dimensional spatial-
Fourier transform.

In order to describe a spatially incoherent surface, C(f) is usually
allowed to assume the role of a delta function. 1 2 Thus, Equation (2.36)
is reduced tu a single integral in two space. Given this form, we see
from Equation (2.36) that the spatial-averaged, two-point intensity cor-
relation in the far field is proportional to the mod,,!us of the spatial
Fourier trarsform across a spatially rough surface, assuming a suffi-
ciently short exposure time 2T. However, only for the case that the
intensity distribution over the source has even symmetry can the phase
of the spatial transform be inferred and used to invert uniquely Equation
(2.36) to derive the intensity distribution on the source, I(Ew).

Finally, the form of Equation (2.36c) shows explicitly that the
intensity autocorrelation function in the far field is proportional to
the product of two spatial power spectra. The spat'iai power spectrum

(XI 12)]12 smltpidb CE~ k x)Jj the spatial power

spectrum of the correlation function describing the surface roughness.
If the surface is sufficiently rough that this function approximates a
delta function, tien the transform is essentially constant, and all spa-
tial frequencies o." the source can be inferred. However, as tri, -n'rre-

lation interval increases, (+2)] acts to band limiL the

detectable spatial spe1hrum of the source. This effect is discussed,
for example, by Kinsly for the case of microdensitometer imaging with
partially coherent ligh"

We also wish to point, out that the transform of the intensity dis-

tribution over the source, Rr (X-1 1 2 )] is a function of the difference

coordinates in the receive.. space. H!o'wever, the transf'orm of the phase
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correlation function, C[2• (X, ) is a function of the average
(global) coordinates in the receiver space. This term cannot strictly
come out of the spatlal-averaging process of Equation (2.36), since theaveraging is done in the global sense. In effect, the re3olving capacityof a measurement in the receiver plane depends on t;,e position in the.plane. However, if the coherence area in the source plane is small, Cis nearly constant over a large range of its argument and, hence, isgenerally insensitive to changes in the global space variable at thereceiver around the origin. As indicated by Goodnan, 1 7 this factor isgenerally treated as a constant over the receiving aperture.

2.7 An Illustrative Experiment

To illustrate the above ideas, we suggest a simple experimentembodying these mathematical ideas. A helium-neon laser in single-axial-mode configuration is used to transilluminate a symmetrical source(Figure 2.1). The source has a random-phase character to obtain spatialincoherence. The far-zone intensity pattern is recorded by film, using
an exposure time less than the reciprocal of the source bandwidth. Thisexposure ensures that the spatial pattern is not washed out.

0I
O F

Figure 2.1 A symmetrical object (0) is illuminated with collimatedlight from a single-axial-mode laser. Ground glass is introducedat plane 0 to achieve spatial incoherence. The far-field intensity
pattern is recorded by film at plane F. The lens focal length isindicated by f

Next the film is develcped so that it is linear in intensity and isused to make two identical positive transparencies. The positives arethen placed in a collimated beam (Figure 2.2) to form the correlated
intensity over an averaging area. The signal transmitted by the trans-
parency pair is optically Fourier-transformed, a dc block is inserted
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f2 f f f

Figure 2.2 A pair of transparencies, T, and T2 , are made from film
record in plane F of Figure 2.1. Intensity-autocorrelation function
is measured by power meter for spatial lag f : -•. DC block is
inserted between lenses at arrow to remove unwanted signal.

to remove the unwanted average term, and the total remaining irradiance

is measured. This signal represents the mathematical expression given

by Equation (2.36) for the transparency spatial lag, f' = -•. Since

the source is knowm, a priori, to be symmetrical, the transform of the

source intensity is pure real. The square root of the correlation signal

(see Section 3.4 for details of this operation) is proportional to the

spectrum, which is then known as a function of spatial lag. Finally,

this two-dimensional signal is Fourier-transformed by machine to give

the scaled source irradiance.

2.8 Summary and Conclusions

Having developed an intermediate-average, mutual-coherence function

as a starting point, we have derived an expression for the two-point
intensity correlation in the far field, independent of time-averaging
except for the temporal resolution of the detector. This result is valid

for narrow-band, high-intensity light scattered from a spatially rough
surface (c aibitrary coherence area.

There are a number of special benefits from detecting images by

the technique of intensity correlation. (1) The method is relatively

insensitive to the effects of atmospheric scintillation.2 (2) Because
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the signal is detected in the spatial-transform domain, high-frequency
detail about the scattering surface translates to large spatial lags in
the far field. This result could be particularly important at frequen-
cies where detector resolution is not well developed. (3) A special
advantage to intensity interferometry in the spatial domain is the utili-
zation of gaussian statistics in the spatial (not temporal) sense. By
this method, sources with non-gaussian time statistics (such as single-
axial-mode lasers) can be utiliLed. (4) Still another advantage of
spatial detection is that images of moving surfaces can be formed using
brief exposures.

We have therefore shown that, given a symmetrical, spatially inco-
herent source illuminated by high-intensity light, the far-zone intensity
pattern can be used to form the optical image of the source if the signal
is recorded with sufficiently short time resolution.

3. SPATIAL INTENSITY INTERFEROMETRY WITh

SOURCES OF ARBITRARY SYMMETRY

3.1 Introduction

In Section 2, we showed that, given a symmetrical, spatially inco-
herent source illuminated by high-intensity light, the far-zone intensity
pattern can be used to form the optical image of the source if the signal
is recorded with sufficiently short time resolution. The primary result
of this analysis is that the far-field intensity correlation function is
proportional to the square of the spatial Fourier transform of the source
intensity distribution. Sinre, in general, a source exhibits an inten-
sity profile of arbitrary symmetry, its spatial Fourier transform is com-
plex. The measurement, however, gives information only about the spatial
power spectrum (absolute square of the spatial Fourier transform) and,
therefore, only the modulus of the Fourier transform can be inferred.
The inversion of the spatial transform to derive the source intensity is
thus impossible since the necessary phase information has been lost.

In the experiments of Hanbury Brown and Twiss, the loss of phase is
not a serious limitation since their objective is simply the measurement
of star diameters. If a circular disk is used as a model for a star, the
object is known, a priori, to be symmetrical. Thus the spatial transform
of the (real) intensity is pure real. For this situation, the phase of
the transform is zero or r for all spatial wave numbers, and the square
root of the power spectrum can be Laken (with a sign ambiguity to be dis-
cussed below) to derive the spatial transform itself.

In the application of intensity-interferometric techniques to ter-
restrial imaging systems, though, the loss of phase is a serious limi-

tation to the method. A number of authors19,20,21 have addressed
themselves to the problem of phase recovery. Wolf 1 9 pointed out that
the complex transform of intensity has analytical properties that can
be used in certain situations to infer the phase from measurements of
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the modulus alone. Gaino1 0 ' 2 2 has suggested a triple-intensity correlation
scheme by which the phase can be inferred. However, there is an ambiguity
in the sign of the phase angle, and two intensity profiles aie derived,
one the symmetrical inverse of the other, and supplementarK information
must be gathered to infer the proper-handed image. Mehta2° has proposed
another scheme in which a reference beam of an exactly known complex
degree of coherence is superimposed on the signal beam.

We suggest here a simple technique which, when used with spatial
detection, gives both the amplitude and phase of the transform. This
method utilizes preprocessing of the electric field before detection to
exploit a symmetry property of Fcurier transform theory.

3.2 A Symmetry Property

We start by reviewing the well-known property that a function f(x)
can be represented by a sum of two functions,24 one of which is the even
(symmetrical) part of f(x), and the other the odd. The even [E(x)] and
odd [O(x)] parts of f(x) can be found simply by the formulas

1

E(x) : [f(x) + f(-x)] (3.1a)

ard
1

0(x) = g [f(x) - f(-x)]. (3.lb)

If, in addition, we know that f(x) is pure real, then the Fourier trans-
form will be hermitian; that is, the transform of the even part of f(x),
E, will be pure real, while the transform of the odd part will be pure
imaginary.2A

By the spatial-intensity method noted, the modulus of the Fourier
transform of the source intensity can be derived. Using the above sym-
metry properties, we preprocess the electric field before detection and
autocorrelation so that the source is effectively syimmetrized in its
intensity profile. Since its transform is pure real, the power spectrum
can be used to compute the spectrum of the even part of the source irradi-
ance. The Fourier spectrum of the even part of th..' source intensity is,
however, the real part of the transform of the unpreprocessed signal.
Thus, if the modulus and the real part of the transform for each spatial
wave number are compared, the phase of the transform, can be inferred to
within a sign and used to compute the source intensity. The removal of
the sign ambiguity will be discussed below.

3.3 Mathematical Model

We start by writing a symmetrized field in the far zone of the
source (•) plane, where

VE(xi) E vxi) V (-1, 4). (3.2)
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Writing the correlation of 1 (•() and 1' •(x_2) where I'(x 1 ) =VE(xi)VE(x),

and using the theorem of gaussian statistics [Equation (1.13)], we have

()<A', (3.3a)(x_) x_)>= <VE( Ev•x•3l

--

+~~~~~~~ <A- )A(,)ex-L- 1  34

,<V( V*(1_)_ •v(_)v*(_-1 - -1 + v(-x(lV*(-*()2) ,
(3.3b)

w'here constant terms here and in later expressions have been scvppressed.

Nca the form of tquation (2.34b) is used to express the intensity corre-
lation to get

Ig t I 2dW einca(T)H(p) exp(ior/c)do
'I (X jl;T (1 ( 2 ;T)> f a

÷ <-A(C uo)A(L•2,a) exp['•(C g•o]

"" <A(Topi , a )An•dan ) exp*irs -tl p are epst.4
<A-&-I a)At(j 2' ) expr[io_ (-! * _0 ) 1 >

rc [A ( c12

We can see now that the orn of the intensity correlation in the far
field is proportional to the setare of the spatial Fourier transform of
fc2r terms. The nature of these terms can tc better understood by
referring to Figure 3.1a. We show the coordinate axes for the source (_
plane. Two points E, and &-, and their symmetrical pair are represented.
The circle illustrat-es the coherence area characterizing the surface
roughness. As discussed in Section 2, the first average of Equation (3.4)
is zero unless points -, -- 1-. sach that they can be enclosed by the

perimeter of the coherence area. If this criterion is satisfied for the
first average, it is also met for the last. Simiiarlv, the cross pro-
ducxs of Equation (3.4) are zero unless -

40



g /A f/f2/
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(a) (b)

Figure 3.1 Coordinate axes in the plane of the source. (a) Points
11 and 12 and their symmetrical pair are shown; center-of-mass vectors
are shown, where 9 is the mean of positions L and L2 and f is the
difference. For the coherence area (CA) small, j- = j, and
f = 0. (b) Source-plane coordinates for j1  Here the center-
of-mass vectors indicate j 0 and f/2

We also wish to note that the spatial average expressed by the
angle brackets on the left-hand side of Equation (3.4) can be assumed
to approach the ensemble average as the ar:. of spatial correlation in
the detector plane grows large with resp'ct to the correlation interval
in the same plane. The nature of this zorrelation function is such that
information about the individual intensity products [I'(xi;T)I'(xj;T)]
will be averaged over the active correlation area. To understand this
average more fully, we define center-of-mass coordinates in the receiver
plane where

x +x
::.1 -2

= and f x - x (3.5)2

Thus the intensity correlation in the far zone can be expressed func-
tionally as

<!'(x 1 ;T)I'(.x2 ;T)> = <I'(Z' + f'/2;T)I'(j' - f'/2;T)>. (3.6)

But for a particular spatial correlation lag, the difference between
receiver points. f', will remain constant while the center of mass of
the points, j , will vary. Depending on the domain over which Y" is
varied, terms dependent on this global variable should disappear leaving
only functions of the difference coordinate.

We now examine the first and last terms (TI,4 ) of Equation (3.4).
If we change the position variables over the source, &_1 and &2, to
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center-of-mass coordinates, & and f, in the manner of Equation (3.5),
we get for these terms

CO

T1  A ffj{A P + f/2,o) A(& - f12,o) expfio(f)]>

+ <A(-g- f/2,c) A(-g + f/2,o) exp[i (-f)]J (3.7)

Ae~p[-i +- (gf/2),] ex p - (Z-fE/2), 2dpdf.

As disc:uzý,i in Section 2, the form of Equation (3.7) implies that the
amplitude a...: phase of the fields at the source can be expressed in
product form. The character of the spatial incoherence is determined
by the exponential terms within the angle brackets that form the phase
correlation function over the source. Since we assume a small c.:.erence
area rf'lative tc. the source dimensions, here in Equation (3.7), f is
_.Aall such that A(g + f/2,o) = A(g- f/2,o) = A(g,). Figure 3.1a illus-
trates the center-of-mass vectors. For terms T1 4 to have value, f must
bc small so that L., - ½2! is less than the diamzter of the source-
coherence area. We have also dropped the Fourier transform terms in the
temporal difference frequency variable, P. With these approximations,
the first bracketed expression can be written

<A(g + f/2,o) A(S.- f/2,o) exp[iL(f)]>

= <[A(g,o)] 2 > <exp[i (f)> (3.8a)

= I(jt) C(f), (3.8b)

where the center-of-mass temporal frequency, o, has been changed in
Equation (3.8b) to w. With a similar development of the second bracketed
expression, Equation (3.7) can be written

T1, f f I() + I(-g)] exp(-i 1 [g" (x-x)

f C(f) exp{-i r ff2 - (x, + x)ldf, (3.9a)

-
- 2r (X 12)] 1 2 23b
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Here k is the wave number of the light, and we have used the evenncss of
C(f) to separate the two integrals. The circumflexes in Equation (3.9b)
indicate a spatial Fourier transform, and 1E -(_) + I(-+), a symmetrizecd
source intensity distribution (since Ll = L ="

In a similar manner, the second and third terms in Equation (3.4)
can be examined to get

T2,3  EL(x 1 2+ .2) (X 1 1 2 )] (3.10)

Figure 3.1b indicates the position of the center-of-mass vectors for
this term. Here ý- = -& so that g is small and f/2 = ý_ = L1. The

results of Equations (3.9) and (3.10) show that the symmetrization and
multiplication processes lead to two spatial Fourier transforms of a
symmetrized source intensity. One term depends on the difference of
coordinates in the far-zone (is spatially invariant); the other depends
on the global term. Since the spatial average of Equations (3.4) and
(3.6) invuvz th- translation of the global variable in the receiver
coordinates, term T2 . 3 of Equation (3.10) is summed to a constant and
contributes only for'small global sizes and can be neglected in compari-
son to T1 , for large global excursions. This result is true only for
the spatial-average case. This can be seen by noting that the transverse
receiver correlation lag for optical sources in the far field is typi-
cally a few millimetres. Under the assumption of a large averaging area,
this means that term T2 3 would contribute only for Z' < 3 mm, while
term T1 4 would contribuite for all Z' up to the limit imposed by

[-L (-, . .)]• The transform of the symmetrized source intensity

expressed in Equation (3.9b) is space invariant. However, C, the trans-
form of the phase correlation, is a function of the global variable. As
discussed earlier, the correlation function C(f) approaches a delta func-
tion if the critericn of spatial incoherence is applied to the surface
roughness over the source. Thus its transform, C(S), is nearly constant
over a wide band of spatial frequencies. Therefore, C(t) is relatively
insensitive to changes in its argument over wide ranges of spatial wave
number. But the argument of C is, in general, different for each pair
of multiplied intensities in the far field. Depending on the bandwidth
of C, the maximum averaging area can be specified so that no band limiting
occurs for the maximum global variation.

Apparently the term of Equation .3.10) arises because of the way in
which the source was symmetrized. When a source is considered symmetri-
cal, it is the intensity only which is symmetrical about the origin.
However, here, by the nature of the field symmetrization at the receiver,
there are two positions for which the phase correlation function is unity
rather than the usual one. The cross terms that form T2, 3 give a scaling
to the Fourier transform that is quite different from the term T1,4,
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Using the results of Equation (3.9b) and the fact that the term of
Equation (3.10) sums to a negligible constant under a spatial average,
we can finally write the correlation of intensities I'(11;T) and I'(x,;T)

<1l(x ;T)I'(x 2;T)> f 2df sinc (T)II=o

O 0 -0

f cxp[-i - (x x (3.11a)
JJ r -1 -2 --

O 2

C(f) exp[-i 2(x 1x2 f df

I12 (x- I [CI- (x + x )2 I (3.11b)Er -l- lJ I- _X 2r 1--j

where Equation (3.U1b) is written with the understanding that
-L + 2weight" 1• •12 in a non-stationary way over the

receiver plane and is, hence, not strictly separable. However, this
term is generally treated aE a constant over the receiver plane. 1 7 In
this equation, IE(Elw) = I(ý,w) + I(-&,w) which, by Equation (3.1a), is
the even part of the source intensity. In Equation (3.11b),

ji'EL (x. - x_)]l2 is the spatial power spectrum of the even part of the

source intensity distribution and 1G[L (x is the spatial

power spectrum of the source phase correlation function.

This information will be used below to form the image I(_,w).

3.4 The Transform Inversion

Using the results of Equation (3.11) and the modulus of the total
transform, we can now find the intensity distribution on the source,
I(_,w). In Figure 3.2a, we illustrate the measured spatial power spec-
trum derived by the method of Section 2. If the (positive) square root
is taken, the modulus of the transform (Figure 3.2b) is known.
Figure 3.3a illustrates the spatial power spectrvm of the even part of
the source intensity derived in Equation (3.11). By the hermitian
property of the transform, 2 4 the spectrum itself is pure real. We take
the square root (Figure 3.3b), but with a sign ambiguity such that two
spectra are derived, one the negative of the other. The proper spectrum
can be inferred, however, on the basis of the central-ordinate property
of the Fourier transform (Ref. 24, p. 136), whereby the definite integral
of a function over infinite limits in one space is equal to the value of
of its transform at the origin. Since the i,.tensity is a positive-
definite function, the proper spectrum is positive at the origin.
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ks ks
(a) (b)

Figure 3.2 (a) Representation of spatial power spectrum of
source intensity distribution, I112, vs. spatial wave number ks.
(b) Modulus of power spectrum, III, vs. spatial wave number kS

A A

(a) (b)

Figure 3.3 (a) Power spectrum of even part of source distribution.
(b) Two possible real spectra of the even part of the source
distribution. The spectrum which is negative for ks = 0 can be
eliminated.
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Now, using Figuren 3.2b and 3.3b, we know the modulus and the pro-
jection on the real axis for each spatial wave number kos, Figure 3,4

A
I OS

Im eIlkos)

Figure 3.4 For a particular spatial wave number, kos, the
modulus and its projection on the real axis, fE, are shown.
As indicated by the lower dotted line, the modulus could be
located in the lower-half plane, thus giving two possible
values for the phase of the transform.

illustrates this point by showing the length of the modulus, 111, and its
projection (possibly negative), 1E, on the real axis. It should be noted
that there is also a sign ambiguity here in the phase angle, for the
modulus could appear in the upper- or lower-half plane. From the present
information, there appears to be no way to resolve the sign of the phase
angle. Thus two phases are derived, one the negative of the other. If
each phase record is used with the modulus in a Fourier inversion opera-
tion, two images are derived, one the symmetrical inverse (reflection
through the origin) of the other much the same as Gamo found by a
triple-correlation technique.10, 2

However, in practice, the choice of the proper (erect) image would
seem to be straightforward through the use of a further property of the
Fourier transform. The first moment of a function can be shown to be
(Ref. 24, p. 138)

_ F'(O)xf(x)dx = -2ni (3.12)

where F'(0) is the first derivative of the transform of f(x) evaluated at

the origin. It should be noted that, her-, origin refers to the point
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where the argument of the F' function is zero; it does not imply that
tht derivative is inferred through a measurement constrained to the
neighbornood of the origin in the receiver coordinates. Substituting
I(&) for f(x), the operation of Equation (3.12) describes the point
where I(&) is mainly concentrated. Since, in practice, we can alwAys
translate the source in a known direction off axis by pointing the
receiver system, the source can be moved into, say, the right-half plane.
This means that the centroid is positive, such that the slope of the
spectrum must be negative at the origin. Using this information in
Figure 3.4 for the spatial wave number kos = 0, we can choose the phase
plot with negative slope. Thus the proper orientation of the image is
inferred, and the source intensity distribution is completely specified.

We note that in these operations the Whittaker-Shannon sampling
theorem must be considered with respect to both the spatial-frequency
content of the source and its position relative to the axis of the
viewing system. The method here depends on the uniq ie inference of two
spectra by means of the preprocessed detection scheme. The behavior of
the spectra as inferred from the power spectra is particular~y critical
as the functions approach zero crossings. There the ambiguity of the
functions must be inferred on the basis of continuity arguments. Thus
the limitation on the method appears to depend on noise in the process
which might obscure the beh•¢ior aL these critical points. Also, by
the effect of the shift theorem, 24 even a low spatial-frequency source
when positioned off axis would exhibit fast phase variation, causing
the spectra to go through many zero crossings.

There is a second method of data reduction that is more expedient
than the above dual operation. If the object is pointed sufficiently
far off axis such that the twin images of the symmetrized field do not
overlap, then the standard processing leading to the modulus of the
transform can be ignored. The intensity record from the symmetrized
field can be used to form the twin images, since the transform is pure
real, using the criteria of Figure 3.3 to resolve the proper sign of the
square root. After reconstruction, one of the images can be discarded.

3.5 Measurement Technique

The operation of Equation (3.2) must be accomplished in real time
before intensity detection. Wessely and Bolstad,2S in a study of
turbulence-induced phase fluctuations, have utilized an optical device
that achieves such field symmetrization. A beam-splitter cube, illus-
trated in Figure 3.5, divides the incoming wave (I) into two parts, each
of which is inverted by right-angle prisms rotated 90" with respect to
each other. After recombination, the field (at F) has the form of

Equation (3.2). We note that the ray paths for each leg of the splitter-
inverter undergo an odd number of reflections; hence, with respect to
the incident wave, the recombined field at F exhibits a change in handed-
ness in both the inverted and non-inverted images. The proper handedness
can be restored, of course, by utilizing an additional planar reflection,
In an actual application, it is likily that the splitter-recombiner would
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F
Figurt, 3.5 Beam-splitter cube that divides the
wave into two parts, each of which is inverted
by right-angle prisms (1,2) rotated 900 with
respect to each other. After recombination at
F, the electric field has the form of Eq. (3.2).

be preceded by a telescope, a practical necessity to reduce unwanted
background illumination and to increase the effective size of the detec-
tion plane. In contrast to the experiment of Hanbury Brown and Twiss,
the optical parts preceding the detector plane would have to be high
quality.

The inversion operation described in Section 3.4 can, of course, be
accomplished by electronic processing following reading of the intensity
records. It is not clear how purely optical techniques could be used,
since there is a series of decisions that must be made involving signs
of square roots and continuity of functions at zero (abscissa) crossings.

3.6 Summary and Conclusions

We have shown that by preprocessing the electric field in a simple
way to gain symmetry, the technique of intensity interferometry can be
used to derive the intensity profile of a source of arbitrary symmetry.
This result is accomplished by comparing the intensity-correlation func-
tions of the processed and normal intensity records. It is interesting
to note that it is not necessary to invoke the methods of higher-order

correlations10,22 to infer the phase of the spatial transform.
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4. LASER SPECKLE AND SPATIAL INTENSITY INTERFEROMETRY

4.1 Introduction

In this section, w- will discuss the relationship between the well-
known phenomenon of laser speckle and spatial intensity interferometry.
There is a strong similrity between the results derived in Section 2
and previous analyses dea'ing with laser speckle; both areas of theory
show that the absolute square of the source-intensity Fourier transform
is proportional to the far-field correlation of intensities. Although
the mathematical relations between the source and detection planes are
similar, the intensity signals at the detection plane that are auto-
correlated arise frcm different phenomena. Laser speckle theory is
formulated in terms of a monochromatic field scattered from a rough sur-
face. The time-invariant speckle pattern in the far field originates
from the interference of monochromatic waves from different points over
the scattering surface. Spatial intensity interferometry is formulated
in terms of quasimonochromatic radiation scattered from a rough surface.
A time-dependent speckle pattern in the far field is generated by inter-
ference of different temporal frequencies scattered from the source.
Thus the temporal response of the detector must be sufficiently short to
resolve the time-varying, intensity-interferometric signal. However,
the time-invariant speckle pattern can be recorded with a long exposure.

We will discuss the mathcmatical similarities between these two
theorie.;.

4.2 Laser Speckle Formulation

Two papers, representative of laser-speckle investigations, are due
to Goldfischer 26 and Crane. 2 7 Although there are some discrepancies in
the results of these efforts, 27 the basic conclusions are similar. To
illustrate the results of laser speckle, we use the work of Goldfischer.

We start by noting that Goldfischer argues for a diffuse surface
model that contains 'in infinitely dense collection of scatterers.. .with
random phases." He $-.s thus implicitly argued for the criterion of spa-
tial incoherence even though he does ;!ot utilize this concept in a quan-
titative way [Lf. Equation (1.7b)]. Goldfiscbhr begins with a real form
of the fluvgens-Fresnel equation (cf. Section 1.2) by writing the electric
field in the receiver plane as

E(x,)'} : [ l 1,n~r A~ancos k t + + Oy+ e • , (4.1)

(xL\r r, xy. j

where the field, E(x,y), is due to the particL ar area on the scatterer

at A&An, pn is a random phase angle associated with the scatterer at

({,n), and 0 is a coefficient written to absorb the terms neglected in
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Equation (1.2b) and depends on the location of the point of observation,
and a is the scattering efficiency of the surface. We note that Equation
(4.1) reveals a monochromatic treatment of the scattered laser radiation.

Next. the field at the receiver plane is squared to form the inten-
sity, giving

I(x,y) = I Q [

X 2COS > 2) + Cos [k (x, ;yr')+ (4.2a)

.sin [k (Xý.n + Y, ~ sin [k (xEC+ Yn') +~ '

rr

ý,n t

XCos Wx(- r y(n,- rat) + (p

The summations of Equation (4.2) are later allowed to approach integrals
as the areas AýAn go to zero. There are two distinct forms for this
equation. If the primed terms are equal to the unprimed terms, the mean
intensity in the far field is derived. This is the dc term of no use to
us here. The intensity I(x,y) of utility here has the mean subtracted
out, and we restrict, as does Goldfischer, the summations of Equation
(4.2) to occur only over the unequal primed and unprimed variables, i.e.,
we require &4' and/or nrn'.

We now define new variables of integration

k = and k (n -n') =(4.3)

Y r

Using these relations, the spatial intensity autocorrelation function in
the far field of the source is formed, where averaging eliminates terms
involving random phases to give

so



<I (X1)I( (2)>=f dw di cos(wy + S6)

Sr rJJ d& dn I(C,n) w, - -n (4.4)

and the spatial lag in the detector plane is expressed by

y = xI - x 2 and 6 = y - Y2 " (4.5)

Thus the right-hand side of Equation (4.4) expresses the autocorrelation
of intensities in the far field as a Fourier transform of the auto-
correlation of intensities over the source.

Finally, using the autocorrelation theorem, Equation (4.4) can be
written in the form given by Goldfischer where

nI(n) I(X-)> :(a/ I(,) (4.6)

" ~and

I(y = d• dr1 I(nn) ,'xp (Y& + 6n)]• (4.7)

This result, utilizing only a monochromatic formulation, is identical in
form to the comparative expression of spatial intensity interferometry
given in Equation (2.36); the intensity autocorrelation function in the
far zone of a spatiall!' incoherent source is proportional to the absolute
square of the spatial Fourier transform over the source. However,
Equation (4.6) reflects no constraint involving the exposure time. As
indicated by Equation (4.2b), the useful intensity signals in the receiver
plane arise from interference of monochromatic waves over different por-
tions of the source plane.

4.3 Summary and Conclusions

We have seen that both laser specklu and spatial intensity inter-
ferometry techniques indicate that the far-field correlation of intensi-
ties is proportional to the absolute square of the source-intensity
Fourier transform. However, laser speckle theory describes scattered
monochromatic radiation in a time-independent pattern requiring no expo-
sure control to detect. In contrast, spatial intensity interferometry
is formulated in terms of quasimonochromatic radiation that yields a
time-varying pattern. Exposure control commensurate with the bandwidth
of the radiation is required to resolve the pattern.
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We have seen that both the time-varying and time-invariant speckle
patterns contribute to the useful signal describing the source intensity
distribution. We must ask, is it to be expected that speckle recording
with short exposures would result in an increased signal in the auto-
correlation process due to the time-varying signal which would otherwise
be lost? It would seem that the answer lies in the nature of the corre-
lation between the two kinds of patterns. This question will be examined
experimentally in the next section.

S. EXPERIMENTS IN INTENSITY CORRELATIONS

5.1 Introduction

In this section, we examine supporting experimental evidence for
some of the basic ideas encountered in this dissertation. Specifically,
in Section 2, we showed that through the utilization of intensity beat
signals at a detection plane, a spatial Fourier transform relation is
derived with respect to the source-plane irradiance distribution. In
Section 4, w0 showed that the Fourier transform relation between the
source and detection planes using time-varying intensity beats of an
optical source is identical to that derived in laser speckle theory2 6 ,27

using a monochromatic formulation. Since these two theories are identi-
cal in their spatial transform relations, we will show first the results
of unpublished laser speckle experiments performed by Peppzrs 2 8 which
verify these relation3.

As we have discussed in Section 4, the signal utilized in laser
speckle theory (and by Peppers in his experiments) is time i,,ariant,
and, hence, can be recorded with a long exposure. Here, we will refer
to this signal as the "dc speckle pattern." By analogy, the time-varying
intensity signal of import to the intensity-interferometry formalism we
will refer to as the "ac speckle pattern." In the latter half of this
section, we will describe our own measurements of intensity fluctuations
in a laser speckle pattern. By these experiments, we can infer the
existence of an ac speckle pattern, the nature of its fluctuations, ani
its relation to the dc speckle pattern.

5.2 Experiments in Spatial Intensity Correlation

We describe now the intensity correlation experiments cf Peppers 2 8

which illustrate the transform relations given in Sections 2 and 4. The
experimental configuration that he used is similar to that illustrated
earlier in Figure 2.1. A helium-neon laser has been used to illuminate
an opal-glass diffuser (to introduce spatial incoherence) followed
immediately by an object; it consists of a 200-mesh grid of square holes
outlined by a 1.22-nm circular hole in a metal plate. A photograph of
this object is shown in Figure S.l. This grid, along with the glass
diffuser, was placed at plane 0 il.ustrated in Figure 2.1. At plane F,
the resulting dc speckle pattern was recorded phctographically and is
shown here in Figure 5.2.
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Figure 5.1 Object used f*"or laser speckle recording.
A 1.22-onn circular hole outlines a 200-mesh grid.

(Courtesy of N. A. Peppers28)

Figure 5.2 Far-field speckle pattern of objei
shown in Figure 5.1 with opal-glass diffuser.
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The rnntographic record made at plane F, Figure 2.1, was used to
wake a pa;r of positive transparencies in order to form the autocorre-
lation function given in Equation (4.6). In Figure 2.2, we illustrated
a standard way in which an autocorrelation function can be formed by
translating physically one transparency to all vector spatial lags f'.
An alternative approach, used by Peppers, is shown in Figure 5.3.

d f
1) TI T F

Figure 5.3 Optical system used to ftnrm the correlation of
transparencies, T, and T2 . Collimated light impinges from
the left onto diffuser, D. Distance between T, and T 2 is d,
and f indicates the focal length of the lens. F denotes
the film plane.

Collimated light from the left is diffused at plane D where the first
transparency, TI, is placed. At a distance d from the first transparency,
a second identical positive, T2, is positioned and followed dfrectly by
a lens of focaO length f. At the focus of the lens, film (F) records
the two-dimensional autocorrelation function. Reflectio•i on the geometri-
cal optics interpretation of this system reveals this operatior. Zs well
as the equation governing the spatizl magnification; in the film plane,

s = ff'/d, (S.,j

where s is the spatial lag in the film plane, f is the focal length of
the lens, f' is the spatial lag between the transparenci's, T1 and T2 ,
and d is the distance between the two transparencies.

The zesults of this operation are shown in Figure 5.4 We note a
central spot containing low-frequency information about the object cen-
tered among four side lobes, reflecting si:rong spatial-frequency content
due to the periodicity of the 200-mesh grid. The signal illustrated in
Figure 5.4 is the function given by Equation (4.6). It should be noted
that the intensity relation of Equation (4.6) is similar to the expres-
sion in electric fields given by Equation (1.3). Peppers recorded the
square of the electric field expressed by Equation (1.3) by using the
Fourier transform apparatus of the kind illustrated in Figure 2.1 after
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Figure 5.4 Optical autocorrelation of speckle pattern shown in Figure 5.2.?

first removing the ground glass at plane 0. The result is presented in
Figure 5.5 and is to be compared with the function shjwn in Figure 5.4.
Except for the spatial noise of Figure 5.4, the two functions are similar
in the manner indicated by Equations (1.3) and (4.6).

Figure 5.5 Diffraction pattern of object in Figure 5.1 made by
configuration ilUSttrdted in Figure 2.1 after
removal of optical diffuser at plane 0.28
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In the previous chapter, the autocorrelation theorem was used by
Goldfischer 26 to relate the Fourier transform of the source intensity
autocorrelation [Equation (4.4)] to the equivalent expression of the
squared modulus of the source intensity Fourier transform [Eqvation (4.6)].
Peppers illustrated this equivalence by the following operations. First,
the source irradiance (Figure 5.1) was photographea nd autocorrelated
to form the object autocorrelation function (Figure 5.6'. Next, both
the intensity autocorrelation function (Figure 5.4) and the squared modu-
lus of the diffraction pattern (Figure 5.5) were optically tiansformed
to effect the Fourier inverse of the first operation of Equation (4.4);
these results are shown in Figures 5.7 and 5.8, respectively. Although
the signal quality of Figure 5.7 is somewhat poor, the similarity among
these operations can be seen.

On the basis of these intensity correlation experiments, it appears
that the spatial transform relations predicted by Goldfischer for the dc
speckle pattern can be verified. We have shown in this dissertation the
equivalence between the spatial transform relations for the dc and ac
speckle signals. It remains now to show the specific relationship
between these two speckle patterns. We examine this subject experimen-
tally in the next sections.

5.3 Conditions for Coherence

Before examining laser speckle patterns experimentally, we find it
useful to review che conditions for obtaining spatially fixed inter-
ference patterns. A discussion of these criteria, as well as detailed
experiments into the nature of speckle patterns, has been given by
Martienssen and Spiller. 29 We follow closely their development.

It can be asserted2 9 that each oscillation mode of a source can
interfere only with itself. Since the volume of an oscillation mode in
phase space is h3 (where h is Planck's constant), the Heiser.berg uncer-
tainty relation can be used to write the ranges in position (x,y,z) and
momentum (PXPyP 7 ) for a photon in the mode, where

Ax Apx = h, (5.2a)

AV Apy = h, (5.2b)

Az Apz h. (S.2c)

If the mode propagates in the z direction, the uncertainty of the icmen-
tum in the x-z and y-z planes [per Equations (5.2a) and (5.2b)] ;an be
expressed in terms of the angular apertures 2Aux, 2Au of the beam ia
the x-z and y-z planes. Using the relations h/p = X and sirau, = Ap /p,
sinAuy Apy/p, we can write
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function illustrated in Figure 5.1.28

Figure 5.6 Autocorrelation of object 5.4I:',t:

Figure 5.7 Optical Fourier transf~ruii

of signal function of Figure 5.5.28
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Ax sin Au = A, (S.3a)

Ay sin Au = A. (5.3b)Y

Using Ap : hAv/c and Az cAt, where Av is the frequency spread of the
light and At is the time during which the beam is observed, Equation
(5.2c) can be used to get

Lv At : 1. (5.4)

The values of the angular apertures 2Au , 2Au which fulfill Equations
(5.3a) and (5.3b) are called the coherence ani]es, and the value of
observation time At fulfilling the criterion of Equation (5.4) is called
the coherence time. Angles less than the angular apertures define the
conditions for spatial coherence, or

ax << Aux, (5.5a)

and
a << Lu . (5.Sb)y y

Observation times less than the coherence time At fulfill the condition
for temporal coherence, or

T << At. (5.6)

If the criteria of Equations (5.5a) and (5.5b) are met, a section of a
light beam will experience no fluctuation in space, although, depending
on the observation time T and the inequality expressed by Equation (5.6),
it may experience fluctuations in time. In addition, if a light beam is
observed in a time fulfilling the criterion of Equation (5.6) (is tem-
porally coherent), then there will be no fluctuations in time; but if
the cbservation area is large enough, there will be fluctuations in space.

5.4 Experiments in Temporal Intensity Fluctuations

Martienssen and Spiller29 were apparently the first to suggest the
use of a laser-illuminated rotating ground glass to model a thermal source
with variable coherence time. Even with a laser, the finite width of its
frequency spectrum implies some fluctuations in intensity. These fluc-
tuations can be filtered using a detector with a slow response. If the
laser illuminates a section of ground glass, the random phase variations
intro4uced in the beam are similar to the phase mapping that would be
observed over an incoherent source if the measurement were made in u
time less than the coherence time. Thus the stationary ground glass
corresponds to the case of infinite temporal coherence. By rotating the
ground glass, the phase variations over the source can be made to change
with a coherence time inversely proportional to the angular velocity of
the ground glass.
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This experimental approach was used by Martienssen and Spiller to
repeat the Hanbury Brown -Twiss laboratory experiment in which the cor-
relation of intensity fluctuations in a beam was examined as a function
of detector separation [see Equation (1.21)]. We have duplicated that
experiment using a setup illustrated in Figure 5.9. A Spectra-Physics
Model 125 helium-neon laser is used to illuminate a section of grcund
glass that can be kept stationary or rotated by a motor. The far-field
pattern is divided by means of a beam splitter and examined by t~o
photomultipliers, one of which can be translated transverse to the opti-
cal axis. The outputs of the photomultipliers are fed through ampli-
fiers with a dc block into an electionic correlator (Princeton Applied
Research Correlator, Model 101). The cross-correlation of the two sig-
nals is observed by means of an oscilloscope readout.

LASERM AA

Figure 5.9 Experimental configuration for the correlation of tenmporal
fluctuations within a laser speckle pattern. Ground glass (GG) can be
spun by means of motor (M); beam splitter (S) divides speckle pattern
into two images that are viewed by photomultipliers (PMl,PM2); outputs
are fed through amplifiers (Al,A2) into electronic correlator and intodisplay oscilloscope. Photomultiplier PMl can be translated across

the beam.

In Figure 5.10, we show the correlator output for the case of the
rotating ground glass and complete alignment of the two photomultipliers.
The correlation of electronic signals is shown as a function of time
delay between the two signals. The integration time of the correlator
is i5 s, and the maximum delay shown is 50 ms. The computed correlation
time of the irradiance fluctuations can be shown to be on the order of
20 vs. Thus the correlation behavior of central interest is not resolved
by the scale used in Figure 5.10. Because of the rotation of the ground
glass, the correlation function is periodic. This periodicity, as well
as the fine structure on the correlation function due to the non-ideal
operation of the spun ground glass, can oc easily removed by use of

59



-.. ... , -I - I--. I I- ,~ I I I l I

•1.

C t)

0.0 T

Figure 5.10 Oscilloscope trace of correlator output. Corre-
lation C(r) is plotted vs. time delay, T, between fluctuating
signal components. Both optical detectors viewed the same
area of the laser speckle pattern. Each division along the
T axis corresponds to a time delay of 10 ms.

high-pass filters before the process of correlation. In the experiments
that follow, the correlation lag (i) scale was expanded to give the
maximum (system tested) temporal resolution on the order of S Ps. In
addition, the following measurements make use of the correlation at zero
time delay (origin of the correlation function).

We examined the correlation of intensity fluctuations as a function
of detector separation. Figure 5.11 shows the results; the correlation
is given versus spatial lag (f'). The spatial correlation interval in
the receiver plane is a function of the spot size on the ground glass;
for the setup used the predicted interval is about 0.065 mm. The detector
apertures were about 0.3 mm for reasons of detector efficiency in ensuing
experiments. Thus the shape of che correlation is more a function of
detector aperture than source function. The apparent correlation interval
is about 0.3 mm. It can be seen that the results show a residual corre-
lation level which is due to low-frequency components in the beam. These
low frequencies were progressively eliminated using the high-pass capa-
bility of the amplifiers. The residual correlation was essentially gone
after removal of fluctuations lower than 500 Hz. These results illustrate
the predicted relation of Equation (1.21) and compare as well with the
experiment of Martienssen and Spiller (Ref. 29, Figure 7).

The question posed in an earlier sertion involves the ielation
between the static (dc) and time-varying (ac) speckle patterns due to a
laser source. The setup of Figure 5.9 was used to investigate this phe-
nomenon by keeping the ground glass stationary and examining the temporal
fluctuations due to the laser itself. The stability of this helium-neon
laser is such that the intensity fluctuations compose only a small
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Figure 5.11 Normalized crosscorrelation of intensity fluctuations
vs. difference of detector positions (f') for the case of spinning
ground glass. Spatial correlation interval (CI) and detector
aperture sizP (AS) are shown. Coherence time of the radiation

S•20 us. Curves a, b, and c indicate high-pass filtering starting
at 1, 100, and 500 Hz, respectively.

fraction (< 1%) of the average intensity level. One might imagine that
the temporal mode fluctuations across the laser wave front are every-
where identical since the source is spatially coherent. In the far
field where tne speckle pattern appears, the temporal intensity fluctu-
ations should be completely correlated; this concept can be stated
simply

I(x1 ,t) = A(x2) I(x 2 ,t), (5.7)

or the temporal fluctuations of intensity at one point in the speckle
pattern are identical to the temporal fluctuations at another point in
the pattern times a constant which depends on the average value of the
intensity at that point. This constant is, in fact, the dc speckle
pattern at that particular point.

The crosscorrelation function was measured as before but with the
ground glass stationary. For each spatial lag, the correlation at zero
temporal lag and the dc photocurrent on the movable detector were meas-
ured. We note that the intensity fluctuations due to the laser are a
full two orders of magnitude lower than the rotating ground glass fluc-
tuations. The photomultipliers were operating near the limit imposed
by shot noise; evidence for this observation is given by comparison of
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the crosscorrelation of photomultiplier signals at zero spatial lag with
the autocorrelation of one signai. The autocorrelation is a factor of
two greater because of the correlation of noise; under crosscorrelation
the uncorrelated noise terms vanish. The correlation was normalized by
the dc value, and the results are shown in Figure 5.12. As before,

,.0

b

0.0,
0.0 I 2

f' in mm

Figure 5.12 Normalized crosscorrelation of intensity fluc-
tuations vs. difference of detector positions (f') for the
case of static ground glass. Spatial correlation interval
and detector aperture size are shown in Figure 5.11.
Curves a and b indicate high-pass filtering of 500 and 1 Hz,
respectively.

high-pass filtering of I and 500 Hz was applied to the two data runs
shown. The detector aperture size and spatial correlacion interval
remained the same. As can be seen, the temporal fluctuations are com-
pletely correlated for distances greater than forty times the spatial
correlation interval for this situation in which a spatially coherent
source illuminates a time-independent phase screen. Here, the ac speckle
pattern is identical to the dc speckle pattern and appears merely as a
fluctuation around the average (dc) value. On the average, then, in
this situation there is no gain by making a fast exposure, even if the
depth of modulation were somewhat greater than one percent.

It should be noted that this condition was anticipated earlier above
Equation (2.32). There it was argued that all areas of the scatterer
see the same mode history (i.e., the source is spatially coherent) and
that, therefore, the mode fluctuation of the laser would simply be seen
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as a variation in total received power from one sample to the next. The
measurements of Figure 5.12 bear out this concept.

5.5 Summary and Conclusions

In this chapter, we have seen the way in which the far-field speckle
pattern of a spa~ially incoherent source can be related to the intensity
over the source itself. We have also discussed the conditions for spatial
and temporal coherence and investigated, experimentally, the correlation
of temporal fluctuations in laser speckle patterns. it can be seen that
laser speckle theory26 ,27 forms the limiting case in intensity inter-
ferometry in which the coherence time of the source becomes large and
for which the averaging is accomplished in a spatial sense. At the oppo-
site extreme is found the Hanbury Brown - Twiss experiment in which an
incoherent source is monitored by means of temporal fluctuations averaged
along the time axis. We have seen [in Equation (1.20)] that many of the
beat frequencies in the carrier wave are not useful, practically, because
of the limitations in detector frequency response. This dissertation
bridges these limiting cases by formulating the case of quasimonochromatic
radiation (finite coherence time) detected and averaged in the spatial
domain.

To elucidate the ultimate equivalence among these approaches, we
turn to Figure 5.13. We have represented an ensemble of similar con-
figurations of source-detector planes. We imagine the field-amplitude
distribution across each plane to be identical as well as the two detec-
tion points in the receiver planes. The Hanbury Brown-Twiss case
(quasimonochromatic source, temporal averaging) is taken first. We let
each member of the ensemble represent an intensity measurement made in a
time less than the coherence time of the radiation. The phase structure
over each source surface is therefore frozen, but statistically inde-
pendent from one another. Hanbury Brown and Twiss started by forming
the product of intensities at the two det'-2tion points in, say, the ith
member. They, of course, wanted the ensemble average of that product
and, through the assumption of temporal stationarity and ergodicity,
sought the equivalent operation by means of a time average. ThIs can be
visualized by allowing the member j to represent the identical source
amplitude now exhibiting a new phase structure due to the evolving tem-
poral mode histroy over the source. As many samples are averaged in
time, the function approaches the ensemble average.

In the case of spatial averaging, the ith sample ýan be taken as a
spatial recording of intensities in the x-plane over a time short com-
pared with the coherence time of the radiation. Two points within the
pattern can be sampled to form the product but, again, it is the ensemble
average that is desired. Here, through the assumption of spatial sta-
tionarity (and a sufficiently large area of spatial averaging), the spa-
tial average is assumed equivalent to the ensemble average.
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Figure 5.13 An ensemble of similar experiments. Source ampli-
tude and receiver points are identical. Random phase variations
over each source plane are statistically independent.

We note that all the schemes involving intensity correlation require
a random phase structure across the source. It is achieved naturally
for an incoherent source, and for a spatially coherent laser it can be
accomplished by use of a diffusing glass. We note that this condition
is described analytically by the exponential term of Equation (2.31).
This term is written sufficiently general to include phase perturbation
due either to spatial surface roughness or to temporal mode difference.
It should be noted that a suitably prepared broad-band laser might be
utilized without ground glass if the temporal mode structure could be
sufficiently varied in a statistically stationary way over the scattering
surface.

We note again, as we did at the beginning of Section 1, that the
focus of primary interest in optical imaging is the spatial domain. How-
ever, we have seen that the ability to detect intensity fluctuations and
the manner in which an average is finally taken rests in a most crucial
way with the nature of the temporal statistics of the radiation.
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